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Graphene is a novel material that reveals many remarkable properties. Academic and industry
research groups around the globe are carrying out theoretical and experimental studies to discover
and investigate characteristics of graphene. Due to its outstanding properties, graphene has a poten-
tial to revolutionize technology. Particularly, graphene was found to be one of the best known heat
conductors [Balandin et al., Nano Lett. 8, 902 (2008)], which suggests that it can be used in nano-
electronic and optoelectronic devices as a heat spreader component. The extremely high thermal
conductivity was found for single layer graphene, which consisted of one crystalline plane of sp2-
bound carbon atoms. In that experiment a method of measuring G peak position of the Raman
spectrum as a function of both the temperature of the graphene sample and the power of the heat
source was used to compute the thermal conductivity. The sample in the experiment had approxi-
mately rectangular geometry and a simple model was used to extract the thermal conductivity under
certain assumptions about the nature of the thermal transport. In this work we used finite-element
simulations to model the heat spreading in graphene flakes of variable shapes. We also investigated
how the thermal transport is influenced by the geometry of the heat source and flake width. We
found that all mentioned factors impact heat propagation and have to be included in the experimen-
tal data extraction. The simulations also proved that for the rectangular geometry of the flake and
specific conditions of the experiment, e.g., ratio of the flake width to the laser spot size, the simple
one-dimensional model data extraction was adequate. The developed simulation procedure can be
further used for investigation of thermal transport in graphene multi-layers and graphene–heat sink
structures. The latter is required in order to study the feasibility of application of graphene multi-layers
for the lateral hot-spot removal and other device-level thermal management applications.
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1. UNIQUE CHARACTERISTICS OF
GRAPHENE

Graphene is a recently discovered material1�2 in which
carbon atoms are arranged in sp2 planar hexagonal sheet

∗Author to whom correspondence should be addressed.

structure. Such structure is a building element for any
graphitic material, for example, graphite represents an
ensemble of stacked graphene sheets. Graphene possesses
some unique properties that make it a very promis-
ing material for electronic devices and circuits. In most
conductors and semiconductors electron transport can
be described by non-relativistic quantum equations. But
in graphene electrons and holes behave like relativistic
particles.3 The E–k relation is linear at low energies near
six corners of the two-dimensional hexagonal Brillouin
zone. That leads to zero effective masses for electrons
and holes that can be described by the Dirac equation for
spin 1/2 particles. Experimental results and simulations
suggest that graphene has very high values of electron
mobility at room temperature. Intrinsic mobility can reach
the value4 as high as 2×105 cm2V−1s−1 at a carrier den-
sity of 1012 cm−2. For such a case, the corresponding
resistivity of the graphene sheet would be 10−6 Ohm-cm,
which is slightly less than the resistivity of silver (1�6×
10−6 Ohm-cm), the least resistive metal. The magnitude
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of an electron mobility of graphene exceeds that of InSb
(7�7× 104 cm2V−1s−1) and is comparable to an electron
mobility of carbon nanotubes (1×105 cm2V−1s−1). A sin-
gle layer graphene has an opacity which is unexpectedly
high for just one atomic layer. The white light absorption is

��= 2�3% (1)

where � is the fine-structure constant.5�6 Graphene is
a very strong and rigid material. If several layers of
graphene are suspended over cavities, graphene sheets are
held together by van der Waals forces and one can mea-
sure mechanical properties of the suspended sheet using
an atomic force microscope.7 The spring constant and
Young’s modulus of graphene were found to be 1–5 N/m
and 0.5 TPa, correspondingly. Such remarkable elastic
properties could lead to utilization of graphene as a mate-
rial for sensors and resonators.

Graphene might be the first observed two-dimensional
crystal. However, it is still debated whether such a state-
ment is true. Mermin-Wagner theorem states that con-
tinuous symmetries cannot be spontaneously broken at
finite temperature in one- or two-dimensional theories.8–10

In other words, a two-dimensional crystal cannot remain
ordered in a three-dimensional environment, because of
long wavelength fluctuations. The theorem leads to an
assumption that a large two-dimensional structure will
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eventually fold or collapse into a more stable three-
dimensional crystal. Graphene has a tendency to ripple,11

if suspended. Such tendency, in part, supports the Mermin-
Wagner theory. Proponents for a truly two-dimensional
structure of graphene argue that the Mermin-Wagner the-
orem is applicable for infinite structures, or, at least, for
layers with very large sizes, but finite-size graphene layers
can remain stable as two-dimensional crystals. In the pres-
ence of a magnetic field graphene shows an anomalous
quantum Hall effect.2 The Hall conductivity of a single
layer graphene is

�xy =∓4e2
(
N + 1

2

)
h

(2)

where h is the Plank constant, e is the elementary
charge, and N is the Landau index level. The factor 4
comes from double valley and double spin degeneracies.
Above equation shows that the sequence is shifted by 1/2
from the standard. Contrary to single layer graphene,
bilayer graphene displays the quantum Hall effect but the
sequence is standard:

�xy =∓4Ne2

h
(3)

In presence of very intense, time varying magnetic fields
the conductivity of graphene oscillates. This is so-called

2 J. Nanoelectron. Optoelectron. 3, 1–21, 2008



R
E

V
IE

W

Subrina and Kotchetkov Simulation of Heat Conduction in Suspended Graphene Flakes of Variable Shapes

Shubnikov-de Hass effect. The longitudinal resistance
of graphene is at maximum12 for every Landau index
value N . This is an opposite to many metals, since they
show the minimum of resistance for the integral Landau
values N . A possible explanation of such phenomenon
could be Berry phase that occurs due to zero effec-
tive masses of the carriers near Dirac points.13 Although
E–k relation manifests zero carrier masses, studies of
Shubnikov-de Hass oscillations as a function of temper-
ature reveals that the carriers in graphene have non-zero
cyclotron masses.12

Unique mechanical and electromagnetic properties make
graphene a very promising material for a variety of
high-tech applications. Particularly, due to a very high
conductivity, graphene can be used to fabricate ballistic
field-effect transistors and integrated circuits. Graphene
can be utilized in single molecule gas sensors; absorption
of just one molecule drastically changes a local electrical
resistance. Nanoribbons with specific electrical properties
can be made of graphene to be used in interconnects. High
optical transparency, mechanical strength and flexibility
allow use of graphene in transparent conducting electrodes
such as liquid crystal displays, organic photovoltaic cells
and touchscreens.

2. THERMAL CONDUCTIVITY OF SINGLE
LAYER GRAPHENE

Besides its outstanding electromagnetic and mechanical
properties, graphene shows unique thermal characteristics.
The room temperature thermal conductivity of graphene
was discovered to be extremely high.14�15 Recent exper-
imental observations by Balandin et al.14 suggested the
graphene thermal conductivity to be within the range from
3080 Wm−1K−1 to 5300 Wm−1K−1. This values substan-
tially exceed those of diamond (1000–2200 Wm−1K−1)
which to date is considered to be the best bulk thermal
conductor. The values extracted for graphene are on the
upper bound of those reported for carbon nanotubes or
exceed them. At the same time one should keep in mind
the ambiguity of defining the thermal conductivity for a
single atomic layer due to the uncertainty of the atomic
layer thickness. Outstanding heat transport properties of
graphene make it a promising material for heat manage-
ment for semiconductor devices and circuits. One can use
ultrathin films of graphene as heat spreading components
or embed graphene in some other materials to increase
overall thermal conductivity. Moreover, if graphene is used
as a material for interconnects, it not only allows faster
gate switching, but also efficiently removes the heat from
the regions of ultra high device integration.

The measurement of the graphene thermal
conductivity14�15 was preceded by investigation of its
Raman spectrum.16 In that experiment a single layer
graphene was exfoliated from bulk graphite and placed

on a silicon substrate covered with a film of SiO2. Using
Raman spectrometer the graphene layer was excited with
visible (488 nm) laser light, and the backscattering data
were collected. A cold-hot cell operated using liquid nitro-
gen was able to control the temperature of the sample,
which was varied from −190 �C to 100 �C. The position
of the G peak in the spectrum was measured and found
to be changing from ∼1584 cm−1 to ∼1578 cm−1. The
resulting G peak position distribution was fitted with the
user-defined linear function16


= 
0 −�T (4)

where the temperature coefficient � = 0�016 cm−1K−1.
The very fact that the G peak position strongly depends

on temperature allowed for the designing and carrying out
the experiment during which the thermal conductivity of
graphene was measured for the first time (see Fig. 1).
In that experiment a trench with the width of ∼2–5 �m
was made on the Si/SiO2 substrate by reactive ion etch-
ing. The thickness of SiO2 layer (the depth of the trench)
was ∼300 nm. A single layer graphene flake was placed
across the trench. Then the laser light from Raman spec-
trometer was focused in the middle of the suspended flake
with the spot size of about 0.5–1.0 �m. Large graphitic
pieces were placed on top of the graphene flake at the dis-
tance of 10 �m from the trench edges. Those graphitic
pieces acted as heat sinks. The temperature of the heat
sinks was constant and equal to ambient room tempera-
ture. Power from the laser light was dissipated in the flake.
Due to the low thermal conductivities of air and SiO2 it
was reasonable to assume that the heat dissipation into the
air and SiO2 was negligible, so the heat was propagating
laterally within the flake from the laser spot toward the

Laser light

Heat sink
Heat sink

Silicon dioxide
Silicon dioxide

Silicon

Graphene
layer

Fig. 1. Experimental setup for measurement of thermal conductivity of
graphene.
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heat sinks. Excitation power was controlled and varied,
and the G peak position of the Raman spectrum was mea-
sured in regard to a particular value of the power. Thus the
G peak position was extracted as a function of the power
dissipated in graphene.

Heat propagation in graphene occurs through conduc-
tion. Conduction is defined as a spontaneous transfer of
thermal energy from a region with high temperature to a
region with low temperature. Direct molecular (or atomic)
interactions are involved in the heat conduction either
within the same medium or between different media if they
are in physical contact. The heat propagation in graphene
is mostly due to acoustic phonons (atomic vibrations).15

The law of heat conduction defines the time rate of heat
transfer as

�Q

�t
=−k

∮ 	�T ·−→dS (5)

where �Q/�t is the heat transfer rate, i.e., amount of heat
transferred per unit time, [W], T is the temperature, [K],
S is the surface through which the heat is flowing, [m2],
and k is the thermal conductivity, [Wm−1K−1]. This equa-
tion means that the heat transfer rate is proportional to the
negative gradient in the temperature and to the area of the
surface through which the heat is flowing. That surface is
normal to the temperature gradient. This allows us to write
the heat conduction equation as

�Q

�t
=−kdT

dX
	X · 	x

∮
dS (6)

where x is the magnitude of the unit vector normal to the
surface through which the heat is flowing. The minus sign
in the equation indicates that the temperature drops along
the direction of the heat flow. We drop the minus sign from
further equation transformations.

To extract the thermal conductivity of single layer
graphene the flake was thought to be a parallelepiped
(a rectangle if viewed from top). The axes of Cartesian
coordinate system are orthogonal to the surfaces of the
flake. Thus

�Q

�t
= k

dT

dX

∫ W

0
dy

∫ h

0
dz (7)

or
P = k

dT

dX
Wh (8)

where P = ��Q/�t�, which is equal to the heat power dis-
sipated in the flake (or the heat transfer rate), W is the
width of the flake, [m], h is the thickness of the flake,
[m], and Wh is the cross-sectional area of the flake, [m2].
If the diameter of the laser sport is comparable to the width
of the graphene flake, to simplify the solution, one can
approximate the shape of the heat source into an infinites-
imally thin line, the length of which equals the width of
the modeled flake. A graphene layer has a thickness of
one carbon atom plane (∼0.35 nm). Since it is rather thin,
heating the top plane of the flake with the hot line can be
seen as resulting in creating within the flake a uniformly

W

h

Q

x
z

y

L

L L

h

P

P/2 P/2

x

z

(a)

(b)

A1 (0,0,0)

Fig. 2. (a) Half-flake of single layer graphene. (b) Representation of the
heat flow in graphene as heating two adjacent identical half-flakes.

hot surface normal to the flake’s plane. The length of this
hot surface is equal to W and the width of this surface is
equal to 0.35 nm.

If one cuts imaginarily the parallelepiped flake along
the line of the heat source into two pieces (half-flakes),
for each piece the heat can be seen as flowing into
the half-flake through surfaces (intake surfaces). These
surfaces both pass through three points: A1 = �0�0�0�,
A2 = �0�W�0� and A3 = �0�0� h� (see Fig. 2). The
plane that passes through the points A4 = �L�0�0�, A5 =
�L�W�0� and A6 = �L�0� h� for one half-flake and the
plane that passes through the points A7 = �−L�0�0�, A8 =
�−L�W�0� and A9 = �−L�0� h� for the other half-flake
are connected to heat sinks, so the temperatures of those
planes (sink planes) are constant (note that 2L is the length
of the flake). All other surfaces of the half-flakes are
assumed to be perfectly insulated from the surroundings.
If one considers the half-flake, the fact that (1) the half-
flake has a parallelepiped shape, (2) one of the surfaces
is thermally connected to a heat sink, and (3) all surfaces,
except for the intake and sink planes, are thermally insu-
lated leads to considering the temperature in the half-flake
as linearly changing, thus we can replace the derivative
dT /dx with  T / x and write

P

2
= k

 T

 x
Wh (9)

In the Eq. (9) the dissipated power P is divided by 2,
since the suspended graphene flake was heated in the mid-
dle and we considered the heat propagation as two equal
and opposite flows going through the identical adjacent
half-flakes (note that  x = L). Changes in the dissipated
power result in changes in the temperature of the intake
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surface. The temperature of the sink surface remains con-
stant at 300 K. Thus for a particular value of the dissi-
pated power there is one unique temperature of the intake
surface:

P1

2
= k

 T1

 x1

Wh= k
T1 −Ts

L
Wh (10)

P2

2
= k

 T2

 x2

Wh= k
T2 −Ts

L
Wh (11)

where Ts is the temperature of the heat sink. We can
express the change in the power as

P2 −P1 = k
2�T2 −T1�

L
Wh (12)

and the thermal conductivity as

k = L�P2 −P1�

2Wh�T2 −T1�
(13)

The G peak position of Raman spectrum was found to be
linearly dependent on temperature

!T = !


�
(14)

where !
 is the shift in G peak position in Raman
spectrum, [m−1], and � is the temperature coefficient,
[m−1K−1]. This allows one to write the thermal conductiv-
ity of the parallelepiped graphene flake as

k =
(

L

2Wh

)
·�

(
!


!P

)−1

(15)

During the experiment14�15 the power variations !P were
relatively small. The G-peak position in the Raman spec-
trum was shifted linearly depending on how the dissipated
power was changing. For the Raman spectrum with the
excitation wavelength of 488 nm, the spectrometer power
was varied from 0.5 mW to 4 mW. The G-peak position
was found to be


= 
0 −"PD (16)

where " = 1�226 cm−1(mW)−1 and PD is the power of
the spectrometer (detector). Only a fraction of PD can be
dissipated in graphene:

P = #PD (17)

where # = 0�11–0.13. This was found through a special
calibration procedure.15

Finally the thermal conductivity of the parallelepiped
(rectangular if viewed from top) single layer graphene
flake can be expressed as

k =
(
#L

2Wh

)
·�

(
!


!PD

)−1

(18)

or

k =
(
#L

2Wh

)
·�"−1 (19)

Equation (19) defines the thermal conductivity of
the flake which has a rectangular shape. In reality, the
flake’s shape can deviate from a simple rectangle. In the
experiments14�15 the single layer graphene thermal conduc-
tivity was found to be in the range of 3080 Wm−1K−1

to 5300 Wm−1K−1. From these results the average temper-
ature of a graphene flake was estimated to be ∼370–400 K.

3. SIMULATING HEAT PROPAGATION IN
GRAPHENE

The experiment measured the thermal conductivity of
graphene to be within a relatively wide range. During
the derivation of the thermal conductivity two major
assumptions were made among others (i) the shape of the
flake was thought to be rectangular; (ii) the size of the
laser spot was comparable to the width of the flake so
that the spot was approximated to be seen as a line heat
source producing a plane front of the heat. It is clear that
the future experiments have to examine the effects of the
flake’s shape and geometry of the heat source on the mea-
sured value of the thermal conductivity. Such systematic
studies might not only improve an accuracy of the thermal
conductivity measurements but also help understand a pic-
ture of the heat propagation in graphene. Meantime, sim-
ulations can be performed to study the above mentioned
affects. We simulated the heat propagation in single layer
graphene and studied various shapes and heat sources. The
main objective of the simulation was to model the heat
propagation in graphene for different geometries of the
flake and the heat source and to see whether the simulated
values of the thermal conductivity fall within the experi-
mental range. Also, simulating different geometries of the
flake and the heat source allows us to study how they can
affect calculations of the thermal conductivity. This even-
tually helps plan future experiments.

We simulated the heat propagation in graphene using
COMSOL Multiphysics software package.17 COMSOL
package is a finite element analysis tool and it has
application-specific modules for various physics phe-
nomena: AC/DC Module, Acoustic Module, Structural
Mechanics Module, Heat Transfer Module and others. The
finite element analysis technique is a numerical method for
finding approximate solutions of partial differential equa-
tions. The solutions are mostly based on dividing the sim-
ulated object into a large set of very small components
and linearizing the differential equations within each of
the components.

To simulate the heat propagation in graphene we created
three models which differ from each other primarily by
types of the heat sources:
(i) the model of the line heat source,
(ii) the model of the disk heat source, and
(iii) the model of the Gaussian heat source.

In COMSOL the design of the model involves several steps
that include

J. Nanoelectron. Optoelectron. 3, 1–21, 2008 5
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(1) object’s geometry specification,
(2) division of the object into subdomains,
(3) description of every subdomain,
(4) specification of subdomains’ boundaries.

During the model design a COMSOL software user can
specify the power of the heat source and the thermal con-
ductivity of graphene. The temperature distribution in the
flake is a result of the simulation runs. Thus any dependen-
cies of the thermal conductivity can be studied only indi-
rectly, since the thermal conductivity itself is the input for
simulations. The simulation itself includes dividing (mesh-
ing) the modeled flake into an ensemble of flake’s struc-
tural components and solving heat conduction equations
for each component.

3.1. Model of Heat Propagation from a
Hot Line Source

If the diameter of the laser sport is comparable to the width
of the graphene flake, to simplify the solution one can
approximate the shape of the heat source into an infinites-
imally thin line, the length of which equals the width of
the modeled flake. A graphene layer has a thickness of
one carbon atom plane (∼0.35 nm). Since it is rather thin,
heating the top surface of the flake with the hot line can be
seen as resulting in creating within the flake a uniformly
hot surface normal to the flake’s top or bottom surfaces.

The heated flake, which in COMSOL is called “the
domain,” is represented as a set of two identical subdo-
mains, 1 and 2 (see Fig. 3). Each subdomain is a rectan-
gular sheet with dimensions W ×2L×h. One subdomain
is put into contact with another along one of its surfaces.
This contact surface is a boundary with a heat flux directed
inward normally to the sheet. The area of the contact sur-
face is equal to Wh which is a product of the width of

(a)

(b)

Fig. 3. Model of the flake heated by a hot line source: (a) Axonometric
view; (b) View from top.

the sheet and its thickness. The boundary condition of the
contact surface is specified using Fourier’s law of heat
conduction written in the form

	n · �k�T �= q0 (20)

where n is the magnitude of the unit vector normal to the
contact surface of the subdomain and q0 is the heat flux
that enters the subdomain, [W/m3].

In each subdomain the boundary that is opposite to the
contact surface is specified as being kept at a constant
prescribed temperature

T = T0 (21)

where T0 = 300 K is the room temperature.
All other four subdomain’s boundaries are defined

as being completely insulated from the surrounding
environment:

	n · �k�T �= 0 (22)

i.e., the temperature gradient across the boundary is zero.
This assumption simplifies the model but is reasonable.
Graphene flake, besides being in contact with the heat
sinks and being heated by the laser, can only inter-
act with either air or silicon dioxide. Both air and sili-
con dioxide have thermal conductivities (0.024 Wm−1K−1

and 1.28 W/m−1K−1, respectively) negligible if they are
compared with the thermal conductivity of graphene, thus
the heat propagation from graphene to either air or silicon
dioxide can be ignored.

The heat propagation is modeled as two-dimensional.
Due to the fact that the flake has just one atomic layer
of arranged carbon atoms, and there are no interactions
between graphene and air or silicon dioxide, the heat prop-
agates entirely within the plane. In this model we can vary
the power by assigning different values of the hot bound-
ary heat flux (the cross-sectional area Wh is constant).
Also, we can vary the thermal conductivity. The result
of the simulation is a two-dimensional distribution of the
temperature in the flake.

3.2. Model of Heat Propagation from a
Hot Disk Source

During heating, the laser makes a sport on the graphene
surface. The spot has a shape of a disk. The heat prop-
agation in the graphene flake can be simulated consider-
ing this more realistic heat source. The areas within the
laser spot are generally illuminated with different inten-
sities. Also, there is no sharp edge between the spot and
non-illuminated areas of the flake. Thus it is necessary to
simulate the heat propagation with different radii of the
spot to see how reduction of the size of the spot affects
the heat conduction and whether the line source is indeed
a good approximation for the laser spot. Since the flake is
thin, heating the top plane of the flake with the hot disk

6 J. Nanoelectron. Optoelectron. 3, 1–21, 2008
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(a)

(b)

Fig. 4. Model of the flake heated by a disk source: (a) Axonometric
view; (b) View from top.

can be seen as resulting in creating a uniformly hot cylin-
der embedded in the flake.

For the hot disk source model the flake is described as a
set of two subdomains, 1 and 2 (see Fig. 4). Subdomain 1
is a parallelepiped with dimensions W × 2L×h. Subdo-
main 2 is a cylinder that is embedded in the parallelepiped
and has a specific diameter. The height of the cylinder
equals the thickness h of the parallelepiped. The axis of
the cylinder is normal to the surface of the parallelepiped
with sides W and 2L and passes through the geometrical
center of the parallelepiped. The difference between this
model and the model of the line heat source is that one of
the subdomains, namely the subdomain 2, plays the role of
a heat generator. In other words, the subdomain 2 contains
a heat source within.

The heat conduction in this model is described by the
heat equation derived from Fourier’s law:

−� · �k�T �=Q (23)

where Q is the heat source, [W/m3], which is defined as a
heat energy generated within a unit volume per unit time.

The boundary between the subdomains 1 and 2, which
is a “barrel” surface of the hot cylinder, is defined as a
boundary with the continuous heat flux through it:

−	n · � 	q1 − 	q2�= 0 (24)

where n is the magnitude of the unit vector normal to the
boundary between subdomains, q1 is the magnitude of the
flux of heat flowing out of the subdomain 1, and q2 is
the magnitude of the flux of heat flowing into the subdo-
main 2. The heat flux is normal to the “barrel” surface of
the hot cylinder and is continuous across the boundary: the

amount of the heat leaving the subdomain 2 per unit time
per unit area equals the amount of the heat flowing into
the subdomain 1 per unit time per unit area.

The opposite end surfaces of the subdomain 1 are con-
nected to heat sinks. These boundaries of the subdomain 1
are prescribed to be kept at a constant temperature

T = T0 (25)

where T0 = 300 K is the room temperature, like for the
model of the line heat source.

All other four boundaries of the subdomain 1 and “end-
cap” surfaces of the subdomain 2 are defined as being
completely insulated from the surrounding environment:

	n · �k�T �= 0 (26)

Like in the case of the line heat source, for the model
of the hot disk source the heat propagation is assumed to
be two-dimensional.

The heat source equals

Q = P/V (27)

where P is the dissipated power and V is the volume of
the subdomain 2.

We can vary the power P (the volume V of the sub-
domain 2 is constant) and the thermal conductivity. The
result of the simulation is a two-dimensional distribution
of the temperature in the flake.

3.3. Model of Heat Propagation from
Gaussian Heat Source

The third considered heat source is Gaussian. It is inter-
esting to investigate the case when the laser light intensity
and the dissipated power follow the normal distribution.
Due to a continuous nature of the Gaussian distribution,
the heat source in this model cannot be isolated by bound-
aries. Neither the Gaussian source itself can be some
boundary. Thus in this case, the flake is described as a
single subdomain with a heat source within (see Fig. 5).

Like in the case for the disk source, the heat conduction
in this model is described by the heat equation:

−� · �k�T �=Q (28)

W

Connected to
heat sink

2L

h

Connected to
heat sink 

Subdomain

z

x
y

Fig. 5. Model of the flake heated by Gaussian heat source.
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Here the heat source is defined as

Q = P/V (29)

where V is the volume of the subdomain.
The dissipated power P follows the two-dimensional

Gaussian distribution

P�X�Y �= Ppeak · e−��x2/�2�2
x ��+�y2/�2�2

y ��� (30)

where Ppeak is the peak power. Sigmas can be varied but,
for simplicity of the model, are assumed to be equal
� = �x = �y . The volume of the subdomain has a constant
value. The Gaussian distribution reaches its peak at the
geometrical center of the flake. Like in the case of the line
or disk heat sources, the heat propagation is assumed to be
two-dimensional, thus the dissipated power is a function
of x and y coordinates, but not of z.

The opposite end surfaces of the subdomain are con-
nected to heat sinks. These boundaries of the subdo-
main are modeled to be kept at a constant prescribed
temperature

T = T0 (31)

where T0 = 300 K is the room temperature, like for the
models of the line and disk heat sources.

All other four boundaries of the subdomain are defined
as being completely insulated from the surrounding
environment:

	n · �k�T �= 0 (32)

In this model the peak power Ppeak, the sigma � and the
thermal conductivity can be varied. The result of the simu-
lation is a two-dimensional distribution of the temperature
in the flake.

4. EFFECTS OF A SHAPE OF A FLAKE:
A LINE HEAT SOURCE

First simulation runs were dedicated to the studies how
much the deviation of the shape from that of a paral-
lelepiped (a rectangle if viewed from top) changes the
heat conduction in the flake. We considered the line heat
source. The following values were used as inputs for the
simulation runs: (i) the power of the detector (spectrome-
ter) PD: 0.5 mW, 1.0 mW, 1.5 mW, 2.0 mW, and 2.7 mW,
(ii) the thermal conductivity of graphene: 3000 Wm−1K−1,
3500 Wm−1K−1, 4000 Wm−1K−1, 4500 Wm−1K−1,
5000 Wm−1K−1, and 5500 Wm−1K−1.

Six shapes were analyzed. Figures 6–7 show views from
top of each shape. Shape 1 viewed from top represents
a rectangle with the length L = 23 �m and the width
W = 5 �m. The excitation line from the heat source passes
along the symmetry axis and divides the rectangle into
two identical rectangles each with the length of 11.5 �m.
Shape 2 viewed from top is a “butterfly”-type shape which
is two identical isosceles trapezoids connected along their

(a)

(b)

(c)

Fig. 6. (a) Shape 1, (b) Shape 2, (c) Shape 3.

(a)

(b)

(c)

Fig. 7. (a) Shape 4, (b) Shape 5, (c) Shape 6.
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small sides. The width of each trapezoid is W = 5 �m and
the height is 11.5 �m. Shape 3 viewed from top is also
a “butterfly”-type shape which is two identical isosceles
trapezoids but connected along their large sides which have
the widths of 8 �m. For both the Shape 2 and Shape 3
the excitation lines go along the connection lines. Shape 4
viewed from top is a trapezoid with the height L= 23 �m
and widths W = 5 �m and 8 �m. The excitation line is
parallel to both 5 �m and 8 �m sides and crosses the
trapezoid at 11.5 �m from either 5 �m or 8 �m side.
Shape 5 viewed from top represents a rectangle with the
width W = 5 �m and the length 18 �m connected at its
small sides to two half-disks. The radius of each half-disk
is equal to 2.5 �m. The excitation line is perpendicular
to both straight lines of the rectangle and passes at 9 �m
from either of two small sides of the rectangle. Shape 6
viewed from top is “H”-type shape made of three rect-
angles. One rectangle has the width W = 5 �m and the
length of 13 �m. Two identical rectangles with the widths
of 5 �m and the lengths of 8 �m are connected to the
large rectangle in such a way that the large line of sym-
metry of the 5 �m× 13 �m rectangle coincides with the
small lines of symmetry of the 5 �m×8 �m rectangles.

(a)

(b)

(c)

Fig. 8. Temperature profile of the flake heated with the line source: (a) Shape 1, (b) Shape 2, (c) Shape 3. The excitation power is PD = 2 mW and
the thermal conductivity is k = 5000 Wm−1K−1.

By varying the input power and thermal conductivity we
were able to extract a temperature profile for each shape.
Simulated temperature profiles are shown in Figures 8–9.
The linearity of the heat source defines the linear front
of the heat wave. Subsequently, linear temperature drop
was observed in the Shape 1 flake from the excitation line
to the surfaces connected to the heat sinks. It was found
that only the Shape 6 mostly preserves the linearity of
the temperature drop along the flake. Rounded ends of the
Shape 5 result in non-linear behavior of the temperature.
Also, in the Shapes 2, 3 and 4 the temperature decreases
non-linearly from the excitation line to the ends. This is
due to a constant change in the width of the flake; the
width is not equal to the length of the excitation line every-
where but exactly at the excitation line. The plane heat
front gets disturbed in the Shapes 2, 3 and 4, because the
cross-section of the flake changes along the large sym-
metry axis, thus the area, through which the heat flows,
changes from its original value (measured under the exci-
tation line).

By studying a temperature profile for each shape one
can analyze how the temperature at the excitation line
(the maximum temperature) depends on the power of the

J. Nanoelectron. Optoelectron. 3, 1–21, 2008 9
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(a)

(b)

(c)

Fig. 9. Temperature profile of the flake heated with the line source: (a) Shape 4, (b) Shape 5, (c) Shape 6. The excitation power is PD = 2 mW and
the thermal conductivity is k = 5000 Wm−1K−1.

detector for each studied shape. Figure 10 plots such func-
tions. From the analysis of those plots we can conclude
that
(1) higher thermal conductivity of graphene results in
lower maximum temperature,
(2) when the power of the detector is small (0.5 mW)
the maximum temperature is approximately same for all
shapes,
(3) an increase in the power of the detector corresponds to
an increase of the maximum temperature; such increase of
the temperature is more pronounced for flakes with lower
thermal conductivities.

We can also compare different shapes by analyzing
their maximum temperatures for certain thermal con-
ductivities. Figure 11 shows such analysis for flakes
with the thermal conductivities k = 3500 Wm−1K−1 and
k = 5000 Wm−1K−1. For both cases, the highest temper-
atures at the excitation lines are reached when the flakes
have geometries of the Shape 1, i.e., rectangular (viewed
from top) shapes. Second to the highest value of the tem-
perature is observed for the Shape 6. The lowest tempera-
tures correspond to the “butterfly” Shapes 2 and 3 and the
trapezoid Shape 4.

The thermal conductivity of single layer graphene was
measured as

k =
(
#L

2Wh

)
·�"−1 =

(
#L

2(Wh

)
·
(
!


!T

)
·
(
!P

!


)
(33)

taking in consideration that the flake had a parallelepiped
(rectangular if viewed from top) shape and the heat was
transferring from a line laser source. The measurements
were done without actually measuring the temperature at
the excitation line, and both coefficients

� = !
/!T = 0�016 cm−1K−1 (34)

and
" = !
/!P = 1�226 cm−1�mW�−1 (35)

were set to be constant.
In simulations both the power and thermal conductivity

are input parameters, and the temperature at the excitation
line has to be computed. We can study the function

k = f �"−1� (36)

where

"−1 =
(
!P

!


)
=

(
!P

�!T

)
(37)
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Fig. 10. Temperature at the center of the excitation line as a function of the detector power for different values of graphene’s thermal conductivity
and different shapes.

assuming that the temperature coefficient � remains con-
stant. The example of the simulated k = f �"−1� spectrum
for the Shape 1 is shown in Figure 12. Such spectrum gives
an insight how a shape irregularity from a perfect rect-
angular form and an actual difference of the heat source
from a line affect the measured thermal conductivity. In
the experiments both functions of the G peak position

versus the temperature and the G peak position versus the
power were independent from the shapes of the flake and
source. The shapes of the flake and source were taken into
consideration when the thermal conductivity was derived.
We can do an opposite task and use simulation results,
together with the calculated spectrum k = f �"−1�, to find
an expected value of the thermal conductivity for each type

J. Nanoelectron. Optoelectron. 3, 1–21, 2008 11
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Fig. 11. Maximum temperatures in the graphene flake for different shapes when the thermal conductivity is equal to k = 3500 Wm−1K−1 or k =
5000 Wm−1K−1.

of shapes and sources. For example, referring to Figure 12,
having k = f �"−1� spectrum, we can choose the point
" = 1�226 cm−1(mW)−1 and find the expected value of
the thermal conductivity for the parallelepiped shape to be
k = 4766 Wm−1K−1.

Table I summarizes the simulation results of the heat
conduction through the flakes of different shapes when the
line source is used.

The table compares the surface areas of all shapes, the
temperatures at the excitation lines (Tmax) when the power
of the detector equals 2 mW, and when the simulated ther-
mal conductivity of the flake equals 5000 Wm−1K−1. Also,
the expected thermal conductivities for different flakes are
compared for a chosen parameter "= 1�226 cm−1(mW)−1.
From the presented data we can conclude that the heat
conduction in the Shape 6 flake resembles the heat con-
duction in the Shape 1 flake. Both the maximum tempera-
ture and expected thermal conductivity for the Shape 6 are

–2.0 –1.8 –1.6 –1.4 –1.2 –1.0

3000

3500

4000

4500

5000

5500

T
he

rm
al

 c
on

du
ct

iv
ity

 (
W

/m
K

)

Slope (cm–1/mW)

Fig. 12. Thermal conductivity of the parallelepiped graphene flake as a
function of the parameter " = !
/!P (slope) when the line laser source
is used.

similar to those that correspond to the Shape 1. We might
speculate that for the line source, when the heat waves
form a plane front within the flake, the nature of the heat
propagation is defined by the ratio of the flake’s width to
the flake’s length and rectangularity of the flake. Viewing
both the Shape 1 and Shape 6 from top, each of these
shapes is essentially rectangular for a substantial distance
from the excitation line, and the width of the rectangle is
small compared to the length of the rectangle. Only at the
“ends” of the rectangle, the Shape 1 is “modified” into the
Shape 6 by increasing the width of the rectangle. Since
those enlarged ends are connected to the heat sinks which
are kept under an ambient temperature, the picture of the
heat propagation is not changed much, thus the expected
thermal conductivity and temperature at the excitation line
are almost the same as for the case of an “unmodified”
rectangle. Partially the above mentioned argument is sup-
ported by the fact that the Shape 5 also shows the maxi-
mum temperature and expected thermal conductivity to be
close to those of the Shape 1. They are lower than for
either the Shape 1 or the Shape 6, because the total area of
the flake is reduced. Moreover, the width of the Shape 5
flake reduces fast at the ends of the flake, thus reducing
the surface of the heat front that approaches the heat sinks.

We can argue that both the Shape 5 and Shape 6 viewed
from top to some extent resemble the rectangular shapes
in areas of the flake which are near the excitation line,
thus such flakes display the thermal characteristics simi-
lar to those of the “perfect” Shape 1 parallelepiped. The
Shapes 2, 3, and 4 represent opposite phenomena when the
shapes viewed from top are substantially different from a
rectangle, particularly in the area near the excitation line.
In our specific example, the areas of the Shapes 2, 3, and 4
are larger by 1.6 compared to that of the Shape 1. But both
the maximum temperature and expected thermal conduc-
tivity are lower (the temperature is approximately 93% and
the expected thermal conductivity is approximately 80%

12 J. Nanoelectron. Optoelectron. 3, 1–21, 2008



R
E

V
IE

W

Subrina and Kotchetkov Simulation of Heat Conduction in Suspended Graphene Flakes of Variable Shapes

Table I. Effects of different geometries on the temperature and expected thermal conductivity when the line source is applied. Both the length L
and minimum width W of the flake are kept constant. A is the surface area of the flake; A0 is the surface area of the Shape 1 flake; Tmax is the
maximum temperature when the excitation power is PD = 2 mW and the thermal conductivity of graphene is k = 5000 Wm−1K−1; T0_ max is the
maximum temperature when the excitation power is PD = 2 mW, the thermal conductivity of graphene is k= 5000 Wm−1K−1, and the flake has Shape 1
geometry; k is the expected thermal conductivity of graphene when " = 1�226 cm−1(mW)−1; k0 is the expected thermal conductivity of graphene when
" = 1�226 cm−1(mW)−1 and the flake has Shape 1 geometry.

Geometry A (m2) A/A0 (%) Tmax (K) Tmax/T0_ max (%) k (Wm−1K−1) k/k0 (%)

Shape 1 1�15×10−10 100 444�57 100 4766�20 100
Shape 2 1�84×10−10 160�87 414�46 93�23 3758�53 78�86
Shape 3 1�84×10−10 160�87 415�30 93�42 3782�40 79�36
Shape 4 1�84×10−10 160�87 412�06 92�69 3676�68 77�14
Shape 5 1�10×10−10 95�65 425�91 95�80 4124�25 86�53
Shape 6 1�30×10−10 113�04 436�80 98�25 4477�20 93�94
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Fig. 13. Maximum temperature as a function of the detector power in
Shape 2 when either the length or the surface area matches that of the
Shape 1. The thermal conductivity is 5000 Wm−1K−1.

of the temperature and expected thermal conductivity, cor-
respondingly, of the Shape 1 flake). An increase of the
flake’s width (in average, and in some areas), and a con-
stant change of the width along the large symmetry axis
produce such an effect.

The described simulations were done considering all
shapes having the same lengths L and minimum widths W .
Thus the surface areas of the flakes were different for

Table II. Effects of different geometries on the temperature and expected thermal conductivity when the line source is applied. Both the surface area
and minimum width W of the flake are kept constant. L is the length of the flake; L0 is the length of the Shape 1 flake; Tmax is the maximum temperature
when the excitation power is PD = 2 mW and the thermal conductivity of graphene is k = 5000 Wm−1K−1; T0_ max is the maximum temperature when
the excitation power is PD = 2 mW, the thermal conductivity of graphene is k= 5000 Wm−1K−1 and the flake has Shape 1 geometry; k is the expected
thermal conductivity of graphene when " = 1�226 cm−1(mW)−1; k0 is the expected thermal conductivity of graphene when " = 1�226 cm−1(mW)−1 and
the flake has Shape 1 geometry.

Geometry L (�m) L/L0 (%) Tmax (K) Tmax/T0_ max (%) k (W/m−1K−1) k/k0 (%)

Shape 1 23�000 100 444�57 100 4766�20 100
Shape 2 14�375 62�50 372�74 83�84 2386�44 50�07
Shape 3 14�375 62�50 374�21 84�17 2429�93 50�98
Shape 4 14�375 62�50 369�92 83�21 2314�81 48�57
Shape 5 24�072 104�66 431�70 97�11 4319�07 90�62
Shape 6 15�000 65�22 418�17 94�06 3870�72 81�21

different shapes. We also performed similar studies, con-
sidering all shapes having the same surface areas and min-
imum widths W . For such simulation runs we varied the
length L to adjust the surface area of any particular shape
to that of the Shape 1. Figure 13 shows an example of
the simulated maximum temperature as a function of the
detector power for the flake that has the Shape 2 type, and
which thermal conductivity is 5000 Wm−1K−1. With the
reduced L the temperature rises with the power not as fast
as in the case of the original dimension L= 23 �m.

Table II summarizes the simulations of the heat conduc-
tion through the flakes of different shapes when the line
source is used and when the surface areas and the mini-
mum widths are fixed.

Only the flake of the Shape 5 has the length increased
by 1.05 if compared with the Shape 1 parallelepiped. For
all shapes both the maximum temperature and expected
thermal conductivity are dropped. But such drop is min-
imal for the Shape 5, largely because the length is
increased. The flakes that have geometries of the Shapes 2,
3, 4, and 6 have their lengths reduced to 63–65% of the
original 23 �m. The Shape 6 does not show significant
reductions in the temperature and expected thermal con-
ductivity due to rectangularity of this shape and still a
small fraction W/L. However, the expected thermal con-
ductivity drops as much as twice in the “butterfly” and
trapezoid flakes (the maximum temperatures are 83–84%
of the maximum temperature in the Shape 1 flake).

J. Nanoelectron. Optoelectron. 3, 1–21, 2008 13
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(a)

(b)

(c)

Fig. 14. Temperature profile of the flake heated with the disk source: (a) Shape 1, (b) Shape 2, (c) Shape 3. The excitation power is PD = 2 mW and
the thermal conductivity is k = 5000 Wm−1K−1. The diameter of the laser spot is 0.5 �m.

5. EFFECTS OF A SHAPE OF A FLAKE:
A DISK HEAT SOURCE

During the measurement of the thermal conductivity of
graphene, the heat source was approximated to be the line
source. It is interesting to investigate how good such an
approximation was. In simulations we replaced the line
heat source with a disk heat source. The diameter of the
heated disk is taken as 0.5 �m which is close to the diam-
eter of the laser spot during the experiment. We considered
the same six shapes of the flake and run simulations again
varying the detector power from 0.5 to 2.7 mW and the
thermal conductivity from 3000 to 5500 Wm−1K−1. As a
result, temperature profiles and functions Tmax versus PD

were extracted for each shape and the assigned value of
the thermal conductivity.

Figures 14–15 present the temperature profiles for each
shape when the heat source has disk geometry. Figure 16
shows the maximum temperatures as functions of the
detector power for particular values of the thermal con-
ductivity. Inspection of the plots in Figure 16 allows us to
state that the increase of the temperature, as the detector

power increases, shows the trends very similar to those
observed in the cases of the line sources. But, when the
disk heat source is used, the maximum temperature rises
faster, as the power increases.

Table III summarizes the simulations of the heat con-
duction through the flakes of different shapes when the
disk heat source is used. The detector power is assumed
to be 2 mW and the thermal conductivity of the flake is
assigned to be 5000 Wm−1K−1. The flakes of different
shapes have different surface areas, but the same lengths
and minimum widths. If compared with the data in Table I,
these results show that, when the hot disk source is used,
the geometry of the flake influences changes in the maxi-
mum temperature in a very similar way, as when the heat
source is a line. But the “butterfly” and trapezoid geome-
tries of the Shapes 2, 3 and 4 have lesser effects on the
expected thermal conductivity compared to the situation
with the line source.

As in the case of the line source, the heat conduction in
the Shape 6 flake most closely resembles the heat conduc-
tion in the parallelepiped Shape 1 flake.

14 J. Nanoelectron. Optoelectron. 3, 1–21, 2008
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(a)

(b)

(c)

Fig. 15. Temperature profile of the flake heated with the disk source: (a) Shape 4, (b) Shape 5, (c) Shape 6. The excitation power is PD = 2 mW and
the thermal conductivity is k = 5000 Wm−1K−1. The diameter of the laser spot is 0.5 �m.

6. EFFECTS OF A GEOMETRY OF A
SOURCE: A DISK AND GAUSSIAN
HEAT SOURCES

It is interesting to see how the geometry of the heat spot
affects the simulated heat conduction. To investigate this
we can directly compare the heat conduction profiles for
the line and the disk sources, vary the sizes of the disk spots
or replace the disk laser spot with Gaussian heat source.

Table IV provides a direct reference-comparison of
the maximum temperatures and expected thermal con-
ductivities for different shapes (PD = 2 mW and k =
5000 Wm−1K−1). As it was mentioned, the maximum tem-
perature slightly drops in all shapes when the geometry
changes from a perfect parallelepiped. The percentage of
the drop in the temperature in the case of the line heat
source is almost identical to the percentage of such drop
when the hot disk source is used. However, with the disk
source the expected thermal conductivity is less dependent
on the shapes than when the heat source is a line. Obvi-
ously, variation of the shape from a parallelepiped has a
stronger effect when the heat waves travel in a line (plane)

front. When the heat travels along the longer side of the
flake, the propagation of the front is affected by how the
width of the flake changes. But, when the source has disk
geometry, the heat waves form a circular front, thus, at
least in the areas near the source, the heat propagates inde-
pendently of the shape of the flake. The data in the table
supports the fact that in the cases of the line source and
the “butterfly” or trapezoid shapes the heat propagation is
strongly affected by the geometry of the flake.

Table V directly compares the maximum temperatures
and the expected thermal conductivities extracted under the
same conditions (PD = 2 mW and k= 5000 Wm−1K−1) for
the line and the disk heat sources. The very fact that the
heat source has a disk shape results in increases in both
the temperature and thermal conductivity. The tempera-
ture is increased by 7–10% and the thermal conductivity
is increased by 22–34% when we change the model of
the heat source from the line to the disk. It is interesting
to see that the flakes that resemble parallelepipeds better
(the Shapes 5 and 6) show less dependence on the geom-
etry of the source. This effect is especially seen in the
values of the expected thermal conductivity. While the disk
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Fig. 16. Temperature at the center of the laser spot (disk source) as a function of the detector power for different values of graphene’s thermal
conductivity and different shapes.

heat source models for the Shapes 5 and 6 show 25–26%
increases compared to the line source models, the expected
thermal conductivity is increased by 29–34% in the “but-
terfly” and trapezoid flakes. The difference between the
line and the disk heat sources is not so obvious if the flake
resembles a parallelepiped and when the width W is small
compared to the length L.

According to Table V, the expected thermal conductivi-
ties of the rectangular Shape 1 and the H-type Shape 6 are
both higher than the thermal conductivity reported by the
experiment. If during the experiment the dimensions of the
flake were evaluated correctly, approximation of the disk
source by the line source results in underestimation of the
thermal conductivity during calculations. Moreover, such
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Table III. Effects of different geometries on the temperature and expected thermal conductivity when the disk heat source is used. Both the length
L and minimum width W of the flake are kept constant. A is the surface area of the flake; A0 is the surface area of the Shape 1 flake; Tmax is
the maximum temperature when the excitation power is PD = 2 mW and the thermal conductivity of graphene is k = 5000 Wm−1K−1; T0_ max is the
maximum temperature when the excitation power is PD = 2 mW, the thermal conductivity of graphene is k= 5000 Wm−1K−1 and the flake has Shape 1
geometry; k is the expected thermal conductivity of graphene when " = 1�226 cm−1(mW)−1; k0 is the expected thermal conductivity of graphene when
" = 1�226 cm−1(mW)−1 and the flake has Shape 1 geometry.

Geometry A (m2) A/A0 (%) Tmax (K) Tmax/T0_ max (%) k (Wm−1K−1) k/k0 (%)

Shape 1 1�15×10−10 100 477�72 100 5816�80 100
Shape 2 1�84×10−10 160�87 447�99 93�78 4843�52 83�27
Shape 3 1�84×10−10 160�87 455�15 95�28 5067�79 87�12
Shape 4 1�84×10−10 160�87 450�31 94�26 4914�30 84�48
Shape 5 1�10×10−10 95�65 458�52 95�98 5185�47 89�15
Shape 6 1�30×10−10 113�04 469�94 98�37 5578�88 95�91

Table IV. Maximum temperatures and expected thermal conductivities
for the cases of the line and disk heat sources. Tmax is the maximum
temperature when the excitation power is PD = 2 mW and the thermal
conductivity of graphene is k = 5000 Wm−1K−1; T0_ max is the maximum
temperature when the excitation power is PD = 2 mW, the thermal con-
ductivity of graphene is k = 5000 Wm−1K−1 and the flake has Shape 1
geometry; k is the expected thermal conductivity of graphene when " =
1�226 cm−1(mW)−1; k0 is the expected thermal conductivity of graphene
when " = 1�226 cm−1(mW)−1 and the flake has Shape 1 geometry.

Tmax/T0_ max (%), Tmax/T0_ max (%), k/k0 (%), k/k0 (%),
Geometry line source disk source line source disk source

Shape 1 100 100 100 100
Shape 2 93�23 93�78 78�86 83�27
Shape 3 93�42 95�28 79�36 87�12
Shape 4 92�69 94�26 77�14 84�48
Shape 5 95�80 95�98 86�53 89�15
Shape 6 98�25 98�37 93�94 95�91

a simulation result hints that the true value of the single
layer graphene thermal conductivity is closer to its upper
reported bound (5300 Wm−1K−1) rather than to its lower
bound (3080 Wm−1K−1).

We can also investigate how the sizes of the laser spots
affect the simulated temperature and expected thermal con-
ductivity. Figure 17 presents the temperature profiles for
the Shape 1 flakes when the heat sources are disks and the
diameters of the disks are 0.005 �m, 0.05 �m and 5 �m.
The local temperatures as functions of the coordinates
along the large symmetry axis of the Shape 1 are shown
in Figure 18 for the 0.05 �m and in Figure 19 for the

Table V. Direct comparison of the maximum temperatures and expected thermal conductivities for the cases of the line and disk heat sources.
Tmax _line is the maximum temperature when the excitation power is PD = 2 mW, the thermal conductivity of graphene is k = 5000 Wm−1K−1 and the
line heat source is used; Tmax _disk is the maximum temperature when the excitation power is PD = 2 mW, the thermal conductivity of graphene is
k= 5000 Wm−1K−1 and the disk heat source is used; k_line is the expected thermal conductivity of graphene when " = 1�226 cm−1(mW)−1 and the line
heat source is used; k_disk is the expected thermal conductivity of graphene when " = 1�226 cm−1(mW)−1 and the disk heat source is used.

Geometry Tmax _line (K) Tmax _disk (K) Tmax _disk/Tmax _line (%) k_line (Wm−1K−1) k_disk (Wm−1K−1) k_disk/k_line (%)

Shape 1 444�57 477�72 107�47 4766�20 5816�80 122�04
Shape 2 414�46 447�99 108�09 3758�53 4843�52 128�87
Shape 3 415�30 455�15 109�60 3782�40 5067�79 133�98
Shape 4 412�06 450�31 109�28 3676�68 4914�30 133�66
Shape 5 425�91 458�52 107�66 4124�25 5185�47 125�73
Shape 6 436�80 469�94 107�59 4477�20 5578�88 124�61

5 �m disk sources. Both plots suggest that this function
is highly non-linear in the areas close to the center of the
laser spot, but linearizes as the distance from the center of
the spot increases. Figure 20 shows the maximum temper-
atures as functions of the detector power for chosen val-
ues of the thermal conductivity. The temperature increases
very rapidly with the power in cases of small laser spots,
0.005 �m and 0.05 �m.

Table VI illustrates the results of the simulated maxi-
mum temperature (PD = 2 mW and k = 5000 Wm−1K−1)
and expected thermal conductivity for different disk diam-
eters. The Shape 1 was considered. It is seen that the
reduction of the size of the spot leads to an increased
maximum temperature and an increased expected thermal
conductivity, but such increases are functionally weaker
compared to the size modification. Reducing the size by a
factor of 10 results in just 10% increase in the temperature
and 26% increase in the expected thermal conductivity.
Reducing the size by a factor of 100 leads to 18% increase
in the temperature and 50% increase in the thermal con-
ductivity. Increase of the size of the spot by 100 makes
the temperature drop by 10% and the thermal conductivity
drop by 26%.

According to the table the expected thermal conductivi-
ties for the 0.05 �m and 0.005 �m laser spots are unrealis-
tically high. We might conclude that it is unlikely that the
laser spots can be modeled as the spots with such small
diameters. The model of the 5 �m spot shows the expected
thermal conductivity to be within the range reported by
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(a)

(b)

(c)

Fig. 17. Temperature profile of the flake heated with the disk source. The excitation power is PD = 2 mW and the thermal conductivity is k =
5000 Wm−1K−1. The diameter of the laser spot is (a) 0.05 �m, (b) 0.005 �m, and (c) 5 �m.

the experiment. Thus the large disk spot is not in contra-
diction with observations. Also, since the diameter of such
a big spot equals the width of the flake, the front of the
propagating heat in the flake will be predominantly linear,

Fig. 18. Local temperature as a function of the coordinate along the
large symmetry axis. Disk heat source with a diameter of 0.05 �m.

thus the 5 �m disk source can surely be approximated as
a line heat source.

It is not clear what kind of distribution the laser beam
follows. We investigated whether the model of the heat

Fig. 19. Local temperature as a function of the coordinate along the
large symmetry axis. Disk heat source with a diameter of 5 �m.
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Fig. 20. Temperature at the center of the laser spot (disk source) as a function of the detector power for different values of graphene’s thermal
conductivity and different diameters of the laser spots.

source as a disk with a distinct boundary can be replaced
by the model of the heat source where the power fol-
lows Gaussian distribution. We considered two somewhat
extreme cases. In the first case we assumed that, if the
detector power distribution is normal, then the peak of
the distribution equals the power in the model of the disk

Table VI. Maximum temperatures and expected thermal conductivities
for different sizes of the hot disk source. Shape 1 is considered. Tmax

is the maximum temperature when the excitation power is PD = 2 mW
and the thermal conductivity of graphene is k= 5000 Wm−1K−1; T0�5_ max

is the maximum temperature when the excitation power is PD = 2 mW,
the thermal conductivity of graphene is k = 5000 Wm−1K−1 and the
laser spot diameter is 0.5 �m; k is the expected thermal conductivity
of graphene when " = 1�226 cm−1(mW)−1; k0�5 is the expected thermal
conductivity of graphene when "= 1�226 cm−1(mW)−1 and the laser spot
diameter is 0.5 �m.

Spot diameter,
�m Tmax (K) Tmax/T0�5_ max (%) k (Wm−1K−1) K/K0�5 (%)

0.5 477�72 100 5816�80 100
0.005 566�03 118�49 8697�63 149�53
0.05 523�79 109�64 7310�93 125�69
5 431�39 90�30 4303�94 73�99

source (i.e., 2 mW). We looked what the maximum tem-
perature and the expected thermal conductivity would be if
the sigma � of the Gaussian equals half or one-third of the
radius in the disk heat source model when the disk diam-
eter equals 0.5 �m. The results are shown in Table VII.

When 2� = R, both the maximum temperature (mea-
sured under the condition that the thermal conductivity
of graphene equals k = 5000 Wm−1K−1) and expected

Table VII. Maximum temperatures and expected thermal conductivities
for different sigmas of Gaussian heat source. Shape 1 is considered. Tmax

is the maximum temperature when the thermal conductivity of graphene
is k = 5000 Wm−1K−1; T0�5_ max is the maximum temperature when the
disk heat source is used, the excitation power is PD = 2 mW and the ther-
mal conductivity of graphene is k = 5000 Wm−1K−1 and the laser spot
diameter is 0.5 �m; k is the expected thermal conductivity of graphene
when " = 1�226 cm−1(mW)−1; k0�5 is the expected thermal conductivity
of graphene when " = 1�226 cm−1(mW)−1 and the disk source is used
with the laser spot diameter 0.5 �m.

Sigma measured
in R= 0�25 �m Tmax(K) Tmax/T0�5_ max (%) k (Wm−1K−1) k/k0�5 (%)

R= 2� 390�05 87�74 2955�19 62�00
R= 3� 341�73 76�87 1394�69 29�26
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thermal conductivity are reasonably close to the reported
values (the expected thermal conductivity is closer to the
lower experimental bound). But, when 3� = R, both the
maximum temperature and expected thermal conductivity
demonstrate the values significantly lower than the values
reported by the experiment.

In the second case we assumed that the volume inte-
gral of the laser power, which follows the Gaussian
distribution, equals the volume integral of the power in the
model of the disk heat source. Both volume integrals can
be computed using polar coordinates r , " and z:∫ �

0
Ppeake

−�r2/�2�2��r dr
∫ 2�

0
d"

∫ h

0
dz

=
∫ R

0
Pr dr

∫ 2�

0
d"

∫ h

0
dz (38)

where R = 0�25 mm is the radius of the spot in the disk
heat source model, P = 2 mW is the power of the detector
in the disk source model, Ppeak is the peak power of the
detector in the Gaussian heat source model.

We studied the case when � =R/3. Solving the Eq. (38)
allows one to find the peak power Ppeak, which approx-
imately equals 4.5 mW. Then we found that the maxi-
mum temperature (assuming the thermal conductivity of
graphene equals k = 5000 Wm−1K−1) and the expected
thermal conductivity of the flake are equal to 487.78 K
and 6136.99 Wm−1K−1, correspondingly. As it is seen, in
this model the expected thermal conductivity exceeds the
reported values.

7. SUMMARY

It was also recently reported14�15 that graphene is an excel-
lent conductor of heat with the room temperature thermal
conductivity values on the order of or exceeding those of
carbon nanotubes. The measurements of thermal conduc-
tivity of graphene utilized a non-contact optical technique
where the excitation laser initiated a heat wave propagating
through graphene flake toward the heat sinks. The exper-
imental data extraction procedure assumed a plane heat
wave front. Realistic graphene flakes have variation in their
width, and the heat wave front may deviate from the plane
wave depending on the geometry of the flake and ratio of
the laser-spot diameter and the flake width. In this work
we performed detail simulation study of heat propagation
in graphene flakes of various shapes. The simulations were
carried out using the finite-element method with the help
of the COMSOL software. The structure parameters, heat
sources and boundary conditions were selected to closely
correspond to those reported in the experiments.14�15 The
generated fine meshes allowed us to study heat conduction
with high accuracy and obtain accurate temperature pro-
files. We focused on the effects of the shape of the flake
on the obtained value of thermal conductivity for the fixed
amount of the dissipated power in the middle of the sus-
pended graphene.

It was found that both the shape of the flake and the
selected temperature distribution in the hot spot (liner
source vs. point source; uniform vs. Gaussian) affect the
extracted values of thermal conductivity. At the same
time, for the flakes with the relatively constant width
and the hot spot of the size comparable to the flake
width, the thermal conductivity extracted within the sim-
ple plane-wave approximation give close values to our
simulation results. The very high values of the thermal
conductivity of graphene, in excess of ∼3000 W/mK,
are beneficial for the electronic and thermal management
applications of graphene. It is also interesting to point
out that carbon-based materials, depending on their atomic
structure and amount of disorder, can be both excep-
tional thermal conductors, like graphene and carbon nano-
tubes, and thermal insulators, like amorphous diamond or
diamond-like carbon.18�19 The developed simulation pro-
cedure can be further used for investigation of thermal
transport in graphene multi-layers and graphene–heat sink
structures. The latter is required in order to assess the
feasibility of application of graphene multi-layers for the
lateral hot-spot removal and other device-level thermal
management applications.20 Due to the increasing dissi-
pation power density, switching speed and thermal resis-
tance of the multi-layer structures, the device-level thermal
management becomes important not only for conventional
electronics but also for magnetic memory,21 logic elements
with alternative state variables,22 three-dimensional and
reconfigurable architectures23 and optoelectronic devices.24
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